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Hunger and undernutrition are pervasive, 
thought to be worsening in absolute terms, 
and are major contributors to global ill health 
[Black et  al. 2008; Food and Agricultural 
Organization of the United Nations (FAO) 
2009]. More than one billion people are under­
nourished (FAO 2009), and about a third of 
the burden of disease in children < 5 years of 
age is attributable to undernutrition (Black 
et al. 2008). Economic growth is anticipated 
by many to reduce future undernutrition 
(Smith and Haddad 2002), although recent 
observations do not support this assumption 
(Subramanyam et al. 2011).

Global food security depends on a range 
of factors (Schmidhuber and Tubiello 2007), 
with cereal production playing a major role 
(Parry et al. 2009). Data suggest that global 
per capita cereal production plateaued during 
the 1980s and has since declined (Magdoff and 
Tokar 2010), despite production increases in 
some regions (FAO 2011). Further, with eco­
nomic growth, dietary preferences tend toward 
greater meat consumption, placing greater 
demands on cereal production to provide ani­
mal feed (Msangi and Rosegrant 2011).

Concern is growing that efforts to reduce 
undernutrition in the coming decades may be 
threatened by global climate change (Nelson 
et al. 2010; Parry et al. 2009; Schmidhuber and 
Tubiello 2007). Scientific assessments indicate 

that warming will have an overall negative 
impact on major cereal yields in low-latitude 
areas, although yields may increase in some 
high-latitude areas (Easterling et al. 2007). 
Climate change could place an additional 
5–170 million people “at risk of hunger” by 
the 2080s (Parry et al. 1999, 2004; Rosenzweig 
and Parry 1994). Food security is now one of 
the leading concerns associated with anthropo­
genic climate change (Parry et al. 2009).

A number of terms are used to describe hun­
ger and undernutrition. “Undernourishment” is 
not a health outcome per se; it is a theoreti­
cal model-based estimate of access to calories 
developed by the FAO and is defined as the 
proportion of people “whose dietary energy 
consumption is continuously below a minimum 
dietary energy requirement for maintaining a 
healthy life and carrying out light physical activ­
ity with an acceptable minimum body-weight 
for attained-height” (FAO 2010). That is, it has 
one final cause: a lack of food. “At risk of hun­
ger” is synonymous with undernourishment.

“Undernutrition” refers to a physical state 
and is measured using (among other things) 
anthropometric indices such as stunting 
(height-for-age) and underweight (weight-for-
age) [World Health Organization (WHO) 
2010]. A lack of food—that is, under­
nourishment—is one of the many causes 
of undernutrition, which also include poor 

water and sanitation provision, low levels of 
women’s education, repeated episodes of infec­
tious diseases, and low birth weight [United 
Nations Children’s Fund (UNICEF 1990); for 
more details on causes, see Black et al. 2008; 
UNICEF 1990]. Checkley et al. (2008), for 
example, estimated that 25% [95% confidence 
interval (CI): 8, 38%] of irreversible stunting 
at 24 months of age could be attributed to 
having had five or more episodes of diarrhea. 
Although it can be argued that undernutrition 
itself is not a health outcome, undernutrition 
can be directly linked to increased risk of 
death and poor health (Black et  al. 2008). 
Additionally, child undernutrition has long-
term consequences for the health and earning 
potential of adults (Victora et al. 2008).

To quantify future health burdens, it is 
preferable to model undernutrition (which 
refers to a physical state and accounts for com­
plex causation) rather than undernourishment 
(which is a theoretical concept). They are often 
poorly correlated (Klasen 2006; Svedberg 
2002) and this suggests that undernourishment 
is a poor proxy for undernutrition. The WHO 
concluded that (using a number of simplify­
ing assumptions) undernutrition represented 
a significant proportion of the total burden 
of disease estimated to be attributable to cli­
mate change in 2000 (McMichael et al. 2004). 
Only one group has provided more recent 
quantitative estimates of future undernutrition 
attributable to climate change. Nelson et al. 
(2009) reported that, for two climate sce­
narios, climate change may increase under­
weight in children < 5 years of age by around 
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20% by 2050. Underweight was estimated 
using an equation developed by Smith and 
Haddad (2000), which is driven by per capita 
calorie availability and socioeconomic indica­
tors: the ratio of female to male life expectancy, 
female enrollment in secondary education, 
and access to improved water supply. Future 
per capita calorie availability was estimated by 
modeling crop yield and global food trade. 
All other nonclimate factors were assumed to 
stay constant over time (i.e., unchanged from 
baseline values). These assumptions are likely 
to have led to an overestimate of the future 
burden attributable to climate change because 
this approach assumes that living conditions 
in countries will improve little over the next 
40 years. This is not consistent with historical 
trends; between 1970 and 1995, 43% of the 
reduction in child underweight has been attrib­
uted to improved female education, compared 
with 26% for increased food availability and 
19% from improved water access (Smith and 
Haddad 2000).

More recently, the same group produced 
updated estimates for a broader range of sce­
narios using a similar strategy (Nelson et al. 
2010). Based on expert opinion, the socioeco­
nomic variables driving the underweight model 
were varied with time but were considered 
constant across three socioeconomic scenarios 
broadly representing pessimistic, business-as-
usual, and optimistic economic growth.

Despite the importance of socioeconomic 
influences on health, the data currently avail­
able for climate impact studies are largely lim­
ited to population and gross domestic product 
(GDP) projections that were created for esti­
mating future greenhouse gas emission concen­
trations. At present, any modeling efforts must 
work within these constraints. However, atten­
tion is now being focused on creating a wider 
range of plausible socioeconomic scenarios for 
climate impact assessments (Moss et al. 2010).

We developed a parsimonious model for 
estimating future undernutrition attributable 
to global climate change, specifically due to its 
impacts on crop productivity. We then esti­
mated the future impact of climate scenarios 
on undernutrition in children for five world 
regions in Africa and Asia in 2050 using previ­
ously published estimates of climate change–
attributable changes in calorie availability from 
Nelson et al. (2009). [The more recent esti­
mates (Nelson et al. 2010) are not included in 
our assessment because they were released after 
the completion of our project.]

Materials and Methods
We first describe the development and fit­
ting of a model for estimating the prevalence 
of stunting. Second, we outline the process 
of estimating the proportion undernourished 
(PoU) using per capita calorie availability esti­
mates from Nelson et al. (2009). Finally, we 

discuss the simulation process for estimating 
future undernutrition attributable to global 
climate change.

Model development. Our outcome of 
interest is stunting in children < 5 years of age, 
because this best captures the impact of condi­
tions over the long term (Black et al. 2008). 
Children are considered moderately stunted 
if they are > 2 SDs below the mean expected 
height-for-age and severely stunted if > 3 SDs 
below the mean (de Onis and Blossner 2003).

Scenario data are limited essentially to 
future food availability and per capita GDP, 
and many causes of stunting cannot be explic­
itly modeled. We considered stunting to have 
two main causes, which we refer to as “food 
causes” and “nonfood causes.” Food causes 
are represented as PoU, which accounts for 
climate change effects on calorie availability 
(via changes in crop productivity) and food 
access. [Stunting has food causes other than 
calories, e.g., micronutrient deficiencies (Black 
et al. 2008), but these are not represented in 
PoU, nor are they modeled in climate-crop 
models.] Nonfood causes are represented as 
a “black box cluster” of socioeconomic fac­
tors acting at various levels and represent the 
wide range of social and demographic causes 
of stunting, such as low female literacy and 
poor health care access (Frongillo et al. 1997). 
Nonfood causes are modeled using per capita 
GDP and the Gini coefficient for income dis­
tribution to generate a “development score,” 
as described below.

The conceptual model is represented by 
two general equations:

	 yijk = αk + βk xij + γk wij + θk xijwij	 [1] 
for every i, j; k = 2, 3,	

	 yij1 = 1 – yij2 – yij3	 [2] 
for every i, j; k = 1,

where yijk is the proportion of children 
< 5 years of age stunted in country i, in region 
j, at level k, where k is 1 if no/mild stunting, 
2 if moderate stunting, or 3 if severe stunting; 
xij is food causes of stunting, represented by 
the PoU in country i, in region j; and wij is 
nonfood causes of stunting, represented by the 
“development score” (defined below) in coun­
try i, in region j. The parameters αk, βk, γk, 
and θk are to be determined: βk is the physi­
ological relation between undernourishment 
and stunting (details given below), γk relates 
the development score to stunting, θk relates 
the interaction between undernourishment 
and the development score to stunting, and αk 
is the regression constant.

Equation 1 is a bilinear model because it 
is a linear function of the independent vari­
ables (xij and wij) and their product (xijwij). 
After estimating moderate (yij2) and severe 
(yij3) stunting, we estimated the proportion 

not or mildly stunted (yij1) as described in 
Equation 2.

The “development score” is an indicator of 
the nonfood causes of stunting. It is driven by 
country-level projections of future per capita 
GDP and the baseline (i.e., most recent esti­
mate available) Gini coefficient (because no 
projections were available). The development 
score is scaled from 0 to 1; it equals 0 when 
socioeconomic conditions are optimal (in terms 
of avoiding undernutrition) and all under­
nutrition is attributable to food causes, and it 
equals 1 when nonfood causes are at their cur­
rent (baseline) global maximum [for additional 
information on development score calculations, 
see Supplemental Material, Annex 1 (http://
dx.doi.org/10.1289/ehp.1003311)].

To parameterize the equations, we assem­
bled a global data set obtaining country-level 
undernourishment estimates from the FAO 
(FAO 2010), per capita GDP and Gini data 
from the World Bank Development Indicators 
(WBDI) database (World Bank 2010), 
and stunting data from the WHO’s Global 
Database on Child Growth and Malnutrition 
(WHO 2010).

Stunting data were matched to under­
nourishment data to within a 1-year period. 
Per capita GDP and Gini coefficient estimates 
were matched as closely as possible to the 
stunting data year. The data set covered the 
period 1988–2008 and contained 186 records 
with complete data. Countries were included 
in the data set more than once if they had data 
for multiple years.

Fitting the model. We decided, a priori, 
to use a process-driven (theory-based) rather 
than a standard data-driven (statistical) 
approach to develop and parameterize the 
model equations. The purpose of the model is 
to describe plausible futures, so we designed it 
to be driven as much as possible by relation­
ships that will be stable over time.

Of the two model variables, we assumed 
that food causes have a more stable relation­
ship with stunting than do nonfood causes 
because food causes are physiologically related 
to stunting, and it is reasonable to assume 
that this relationship will hold over the 
next 50 years. In contrast, we assumed that 
nonfood causes—which we modeled using 
per capita GDP and the Gini coefficient—do 
not necessarily have a stable relationship with 
stunting because the relationship is mediated, 
at least partly, by social and political factors 
that may change over time. Therefore, when 
fitting our model, we first quantified the rela­
tionship between stunting and food causes and 
then considered socioeconomic factors.

We assumed that if someone had insuffi­
cient food, and nonfood causes of stunting were 
absent (i.e., socioeconomic conditions were 
optimal in terms of avoiding undernutrition), 
there would be a predictable risk of stunting; 
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that is, we assumed the relationship between 
food intake and stunting is physiologically 
determined and holds globally. This assumption 
is supported by ample evidence that, at least 
until 6 years of age, all adequately nourished 
and optimally cared for children will have simi­
lar, predictable growth rates (WHO 2006). In 
addition to this food intake–related burden, if 
socioeconomic conditions are poor, there is an 
additional risk of stunting from nonfood causes 
and their interaction with food causes, for 
example, high rates of diarrhea associated with 
inadequate sanitation. We do not consider it 
probable that a country will lack sufficient food 
but otherwise have “optimal” socioeconomic 
conditions; our conception is theoretical.

Using the data set, we estimated the pre­
dictable but unknown physiologically based 
relationship between undernourishment and 
stunting at level k (βk) as

	βk = 	mini,j {yijk /xij; i = 1…, j = 1…}.	 [3]

(The operator mini,j{∙} means the minimum 
of the argument in {∙}.) This minimum pro­
portion was obtained by finding the mini­
mum value of the ratio of yijk to xij among all 
the countries in all regions, where, as defined 
above, yijk represents the proportion stunted 
< 5 years of age in country i, in region j, and 
stunting level k; and xij represents the pro­
portion of the population undernourished in 
county i, in region  j. Because it is unlikely 
that all stunting in a country is caused by 
food causes alone, our estimate of βk will be 
an overestimate of the purely physiological 
relationship between food and stunting. In 
practice, because the minimum observed 
value may be too low because of data errors, 
we chose to use the 5th percentile of the 
distribution of yijk /xij as the best estimate 
of βk and used the 1st and 10th percentiles 
as the boundaries of its plausible range (see 
“Estimating future stunting,” below).

Once the above relationship was found, 
one-fifth of the data set (37 records) was ran­
domly selected and reserved for model valida­
tion; the remainder (149 records) was used to 
parameterize the equations. (To obtain the 
best possible estimate, and considering that 
our method of estimation provides a rough 
approximation, we used the entire data set to 
estimate βk.)

We parameterized the equations in a step­
wise manner. In the first step, we used βk to 
attribute a proportion of stunting to food causes 
in all countries in the parameterization data set:

	 rijk = βk xij		  [4] 
for every i, j, k,

where rijk is the proportion of stunting 
attributable to food causes in country i, in 
region j, at level k.

In the second step, we attributed the 
remaining proportion of stunting to nonfood 
causes and the interaction between food and 
nonfood causes:

	 sijk = yijk – rijk		  [5] 
for every i, j, k,

where sijk is the proportion of stunting attrib­
utable to nonfood causes and the interaction 
between food and nonfood causes in coun­
try i, in region j, at level k. We then used lin­
ear methods to estimate the parameters (αk, 
γk, θk) of the bilinear model:

	 sijk = αk + γk wij + θk xijwij	 [6] 
for every i, j, k.

The model was validated by comparing 
levels of stunting predicted by the model to 
observed stunting in the reserved portion of 
the data set (37 records).

For αk, γk, and θk we used the standard 
errors of the estimates to describe the plau­
sible range of their true values. We carried out 
our analysis with Stata (version 11; StataCorp, 
College Station, TX, USA).

Estimating future population under­
nourished. The model required estimates of 
future PoU with and without climate change. 
Calculation of PoU requires data for a) the coef­
ficient of variation for within-population calorie 
distribution, b) the average minimum calorie 
requirements to avoid undernourishment in 
the population, and c) per capita calorie avail­
ability (FAO 2003). Because projection data 
for a) and b) are not available, we assumed they 
remain at baseline levels. For c), we used esti­
mates made by Nelson et al. (2009) for futures 
with and without climate change. The future 
without climate change (reference scenario) 
was represented with the 1950–2000 climate. 
The two climate change scenarios were derived 
from two climate models [the National Centre 
for Atmospheric Research (NCAR) model and 
the Commonwealth Scientific and Industrial 
Research Organisation (CSIRO) model] 
forced by a medium-high emissions scenario 
[the Intergovernmental Panel on Climate 
Change A2 scenario from the Special Report on 
Emissions Scenarios; see Nakicenovic and Swart 
(2000)]. The two climate scenarios were used to 
address uncertainty in the climate system; the 
NCAR model is warmer and wetter than the 
CSIRO model. The global average increases in 
maximum temperature and precipitation over 
land by 2050 were 1.9°C and 10%, and 1.2°C 
and 2% for the NCAR and CSIRO scenarios, 
respectively. For details of the assumptions in 
the crop modeling (e.g., carbon dioxide fertil­
ization, irrigation, and adaptation responses), 
extrapolations to other food groups, and the 
trade model, see Nelson et  al. (2009). For 
additional information on PoU estimation, see 

Supplemental Material, Annex 2 (http://dx.doi.
org/10.1289/ehp.1003311).

Estimating future stunting. The principal 
input to our simulation model was future 
country-level PoU derived from Nelson et al. 
(2009). We ensured within-scenario consis­
tency by using the same GDP (G. Nelson, 
International Food Policy Research Institute, 
personal communication) and population 
projections [United Nations medium variant, 
2006 revision (United Nations 2007)] used in 
the calorie availability projections. Our esti­
mates of the Gini coefficient were the most 
recent estimates available from the WBDI 
(World Bank 2010).

To account for parameter uncertainty, we 
used a standard Monte Carlo approach. Each 
of αk, γk, and θk were assumed to be nor­
mally distributed about their point estimates 
as defined by their respective standard errors. 
βk was assumed to be uniformly distributed 
between the 1st and 10th percentiles of the 
distribution of yijk/xij. This method produced 
probability density functions (PDFs) of future 
stunting.

We aimed to base each PDF on 100,000 
estimates. We selected the first 100,000 esti­
mates that were > 0 and < 1. By rejecting 
low and high estimates, we potentially intro­
duced an upward or downward bias; to assess 
this, we quantified the proportion of rejected 
results [see Supplemental Material, Table 1 
(http://dx.doi.org/10.1289/ehp.1003311)].

Final estimates were produced at the 
regional level for South Asia and four regions 
in sub-Saharan Africa [SSA; central, east, south, 
and west; see Supplemental Material, Table 2 
(http://dx.doi.org/10.1289/ehp.1003311)]. 
We aggregated stunting from the country to 
regional level using population weighting. We 
ran the simulation using MATLAB (version 
2009b; MathWorks, Natick, MA, USA).

Results
Model development and parameters. Table 1 
summarizes the data set used to parameter­
ize our model. The correlation coefficients 
between stunting and PoU were 0.16 and 
0.19 for moderate and severe stunting, respec­
tively. For univariate analysis of stunting and 
the development score, R2 was 0.40 for mod­
erate stunting and 0.45 for severe stunting; 
when PoU was added to these models, R2 
was unchanged. That is, using a data-driven 
approach, including PoU as an explanatory 
variable would not improve the model fit to 
estimate stunting in the present compared 
with using the development score alone. This 
supported our approach using a theory-based 
model that accounts for both food access and 
socioeconomic conditions.

The model parameter estimates are shown 
in Table 2. The β parameter is an estimate 
of the assumed physiological relationship 
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between a lack of food and stunting. Thus, 
the central estimate of β = 0.35 for moder­
ate stunting suggests that for every 1% of the 
population who are undernourished, on aver­
age 0.35% of children < 5 years of age will 
be moderately stunted. Using the validation 
data set, the predicted and observed values are 
well correlated, with correlation coefficients of 
0.78, 0.66, and 0.80 for no/mild, moderate, 
and severe stunting, respectively [for scatter­
plots, see Supplemental Material, Figure 1 
(http://dx.doi.org/10.1289/ehp.1003311)].

Estimates of future proportions under­
nourished. The proportions of regional pop­
ulations projected to be undernourished in 
2050 are shown in Table 3. Countries for 
which complete data were not available were 
excluded [see Supplemental Material, Table 2 
(http://dx.doi.org/10.1289/ehp.1003311)]. 
The estimates suggest that climate change will 
increase PoU compared with a future without 
climate change, and also that climate change 
and population growth will increase it to 
above current levels in all regions.

Projections of stunting in 2050. We estimate 
that climate change will increase stunting in all 
regions (Table 3), with severe stunting increas­
ing by 30–50%. The estimated relative change 
in stunting was smaller than the estimated rela­
tive change in undernourishment. Figure 1 
shows the uncertainty in the stunting estimates 
as histograms of probabilistic outcomes derived 
from the Monte Carlo simulation.

We compared our stunting estimates 
with underweight estimates made by Nelson 
et al. (2009) (Table 4). The results are not 
directly comparable, but we have assumed 
that the ratio of underweight to stunting at 
baseline remains constant in the future. The 
final column shows this ratio as a regional, 
population-weighted average calculated using 
the most recent estimates of underweight and 
stunting (FAO 2010).

Discussion
We have developed the first global model to 
estimate the impact of climate change on future 
stunting—a more relevant outcome measure 
for human population health than “population 
at risk of hunger” (i.e., undernourishment) or 
underweight. Additionally, our model distin­
guishes moderate from severe stunting, which 
bring substantially different health risks (Black 
et al. 2008). Based on our conservative assump­
tions, the model suggests that climate change 
will have significant effects on future under­
nutrition, even when the beneficial effects of 
economic growth are taken into account. This 
is particularly so for severe stunting, with a 
62% increase in South Asia and a 55% increase 
in east and south SSA. The health implica­
tions of this are large: according to Black et al. 

Table 1. Summary of the data used to parameterize the model. 

No. 
observations

Children stunteda (%) Undernourisheda 

(%)
Per capita GDPa 

(2000 US$)Region Moderate Severe Ginia,b

Global 149 19 (3–30) 16 (1–36) 24 (5–70) 897 (81–5,513) 0.45 (0.17–0.74)
Caribbean 9 8 (3–14) 4 (1–8) 12 (5–27) 2,398 (942–3,688) 0.47 (0.4–0.53)
Central America 12 19 (13–27) 12 (4–29) 19 (5–52) 2,051 (633–5,513) 0.53 (0.49–0.58)
South Asia 8 26 (22–30) 26 (2–35) 22 (16–26) 364 (207–589) 0.38 (0.3–0.47)
Southeast Asia 12 22 (11–27) 18 (3–33) 21 (9–41) 729 (232–1,958) 0.4 (0.33–0.44)
SSA

Central 5 21 (16–26) 24 (15–35) 49 (21–76) 309 (81–578) 0.51 (0.44–0.61)
East 23 24 (14–29) 23 (12–34) 36 (15–62) 286 (110–757) 0.43 (0.3–0.6)
South 8 30 (19–23) 14 (9–30) 29 (14–46) 1,298 (415–2,599) 0.60 (0.5–0.74)
West 35 20 (13–25) 19 (7–30) 24 (8–51) 315 (138–684) 0.43 (0.36–0.53)

Other regions 37 16 (6–23) 16 (6–23) 18 (5–58) 1,249 (206–3,975) 0.43 (0.17–0.62)

Data are shown globally (for all those countries for which data were available) and for regions defined for the Global 
Burden of Disease Study (Harvard University et al. 2009).
aValues are regional means (minimum–maximum); numbers are based on records from between 1991 and 2008. bThe Gini 
coefficient ranges from 0, where there is perfect income equality, to 1, where all income goes to one person.

Table 2. Central estimates and plausible ranges of model parameters.
Level of stunting βk αk γk θk

Moderate (k = 2) 0.35 (0.20–0.44) 0.025 ± 0.013 0.26 ± 0.028 –0.43 ± 0.041
Severe (k = 3) 0.18 (0.11–0.28) –0.052 ± 0.021 0.34 ± 0.044 –0.18 ± 0.064

βk is the physiological relation between undernourishment and stunting [5th percentile (1st–10th percentile)]; αk is the 
regression constant, γk relates the development score to stunting, and θk relates the interaction between undernourish-
ment and the development score to stunting (regression estimate ± SE).

Table 3. Estimates of undernourishment and stunting at baseline (present) and in 2050 with and without climate change (CC).

Percent undernourisheda Percent relative 
increase in  
PoU under 

climate changeb

Percent stunted (mean ± SD) of the PDFsa,c Percent relative 
increase in 

stunting under 
climate changed

2050

Stunting level

2050

Region Baseline No CC NCAR CSIRO Baseline No CC NCAR CSIRO
South Asia 22 15 30 29 97 Moderate 23 11.2 ± 1.8 14.6 ± 2.6 14.3 ± 2.5 29

Severe 19 2.9 ± 1.2 4.8 ± 1.7 4.6 ± 1.6 61
SSA

Central 65 53 81 80 52 Moderate 20 19.9 ± 4.7 20.1 ± 5.7 20.1 ± 5.7 1
Severe 20 16.8 ± 5.6 22.1 ± 6.1 22.0 ± 6.1 31

East 35 24 52 52 116 Moderate 22 19.3 ± 2.9 21.1 ± 4.6 21.1 ± 4.5 9
Severe 18 9.7 ± 1.9 15.0 ± 2.3 15.0 ± 2.3 55

South 32 33 60 60 82 Moderate 16 17.1 ± 3.0 21.0 ± 4.8 21.0 ± 4.8 23
Severe 12 8.8 ± 3.3 13.6 ± 4.0 13.6 ± 4.0 55

West 15 12 29 29 142 Moderate 17 17.0 ± 2.2 18.6 ± 2.9 18.5 ± 2.9 9
Severe 16 6.8 ± 1.6 9.3 ± 1.8 9.2 ± 1.8 36

aBaseline undernourishment and stunting data are from FAO (2010) and are calculated as population-weighted averages using the most recent data available; countries without data are excluded. 
“No CC” is the reference scenario (i.e. future without climate change); “NCAR” and “CSIRO” are futures under climate change scenarios based on the NCAR and CSIRO models respectively. 
bCompared with a future with no climate change; estimate based on average estimates from NCAR and CSIRO. For example, for South Asia the calculation was: 

15
2

30 29

1 100 97#

+

=-f p
. 

cEmpirically derived PDF, derived from the Monte Carlo simulations. dCompared with a future with no climate change; estimate based on average of the mean of the estimates from 
NCAR and CSIRO. For example, for moderate stunting in South Asia the calculation was:
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(2008), moderate stunting increases the risk of 
all-cause death 1.6 times (95% CI: 1.3, 2.2) 
and severe stunting increases the risk 4.1 times 
(95% CI: 2.6, 6.4).

Comparing our results with those of 
Nelson et  al. (2009) should be done cau­
tiously because the outcome measures are dif­
ferent. Our estimates for stunting are lower 
than estimates from Nelson et al. (2009) for 
underweight in both South Asia and SSA 
(Table 4). Our estimates for SSA are closer 
but still lower. It is likely these differences are 
largely explained by how the models account 
for socioeconomic conditions. Nelson et al. 
(2009) estimated underweight using a complex 
model that accounted for many socioeconomic 
factors, but because of a lack of data, all the 
factors (except for food access) were held at 
baseline levels. Our stunting equation repre­
sents socioeconomics more simply but is able 
to account for expected changes over the next 

40 years. World Bank projections suggest that 
in South Asia, GDP will increase nine times 
between 2005 and 2050—an absolute increase 
of about $7,000 billion (year 2000 US$); in 
SSA the figures are five times and $1,700 bil­
lion. Hence, allowing for these changes results 

in lower future stunting estimates, with a 
greater reduction in South Asia.

Model approximations and assumptions. 
We used a theory-based rather than statisti­
cally based approach to modeling. Although 
we accept that a statistical approach would 

Figure 1. Histograms proportional to the PDFs for the proportion estimated to be stunted in 2050, by region: SSA, C (central); SSA, E (east); SSA, S (south); SSA, 
W (west). Histograms were derived from 100,000 Monte Carlo runs. The x-axes are proportion stunted at a given level; the y-axes are number of estimates. The 
curves are blue for no climate change, green for NCAR, and red for CSIRO. There is large overlap of the NCAR and CSIRO curves.
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Table 4. Model estimates of numbers of children affected by undernutrition in 2050: underweight and 
stunting.

Millions of  
children affected by 

undernutrition in 2050

Additional millions 
of children affected 

by undernutrition 
with climate change

Baseline 
ratio of 

underweight 
to stuntingaRegion Outcome No CC NCAR CSIRO No CC NCAR

South Asia Underweightb 52 59 59 7 7 1.1
Stuntingc 20 27 26 7 6

SSA Underweightb 42 52 52 10 10 0.7
Stuntingc 45 54 54 9 9

aCalculated as [(moderate + severe underweight)/(moderate + severe stunting)] using data for the present (FAO 2010) 
and as a regional, population-weighted average. bUnderweight estimates for 2050 are from Nelson et al. (2009). cStunt-
ing estimates are the sum of the numbers moderately and severely stunted, based on the mean estimates of the empiri-
cally derived PDFs. 
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be sound if our aim were to estimate current 
stunting, our aim was to estimate future stunt­
ing. Thus, we developed a model that was 
driven as much as possible by a relationship 
that can reasonably be expected to remain con­
stant over time. We assumed that the physi­
ological relationship between stunting and 
undernourishment will remain constant and 
approximated this relationship in the first step. 
After this, because the relationship between 
stunting and GDP (which is mediated by, 
among other things, political and social con­
ditions) may vary significantly over time, we 
fitted the development score and interaction 
term as a second step.

We made several key approximations in 
constructing the model. The first approxi­
mation was to fit a separate bilinear regres­
sion model to two of the stunting levels and 
then use these to estimate no/mild stunting. 
Although a more rigorous approach would 
fit the three regression models simultane­
ously while ensuring that the proportions (for 
each country) are positive and always add up 
to unity, this could lead to an imbalance in 
the goodness of model fit of one level at the 
expense of another. The second approximation 
was to treat the food causes and the product 
of the food causes and nonfood causes as two 
independent variables in the least squares fit. 
This, of course, would introduce errors because 
the variables are correlated. Nevertheless, the 
approximation was validated against a data set 
different from that on which it was based. The 
third approximation concerns the approach we 
adopted for the probabilistic (Monte Carlo) 
simulations. Simulated values that were either 
< 0 or > 1 were discarded. This could intro­
duce bias, and we quantified this potential. No 
estimates were rejected for being > 1, mean­
ing there is no risk of downward biasing. For 
estimates < 0, no moderate stunting estimates 
were rejected, but severe stunting estimates 
were rejected in all regions [see Supplemental 
Material, Table 1 (http://dx.doi.org/10.1289/
ehp.1003311)], meaning there is some poten­
tial for upward bias. Because more estimates 
were rejected in the “no climate change” future 
compared with the “climate change” future, 
this may have reduced the apparent impact of 
climate change on severe stunting.

The fourth approximation was the estimate 
of the physiological relationship between stunt­
ing and a lack of food (as represented by under­
nourishment). We ran our model assuming that 
a uniform distribution of values between the 
1st and 10th percentile of the ratio of stunting 
to undernourishment adequately represented 
the true value. In support of our estimates, our 
parameters suggest that about 60% of stunt­
ing could not be directly attributed to a lack 
of food; this is in line with previous estimates 
that around 40–60% of undernutrition could 
be attributed to environmental conditions 

(predominantly a lack of water and sanitation) 
(Pruss-Ustun and Corvalan 2006).

Although a more elaborate approach could 
have been used, inevitably there is always a 
trade-off between model complexity and ease 
of model use. We have tilted more toward 
model simplicity but at the same time quanti­
fied the errors induced by the approximations, 
as far as possible.

We made estimates of future under­
nourishment from projected calorie availability. 
In doing so we assumed that both within-coun­
try food distribution and average minimum 
calorie requirement remained at baseline levels. 
In support of these assumptions, we note that 
FAO estimates of within-country food distribu­
tion are based on extrapolations of infrequently 
collected data from relatively few countries and 
are restricted to lie between values represent­
ing a given maximum and minimum equity 
of distribution (based on estimated require­
ments). Varying values within this range has 
been found to have little impact on PoU in 
countries with low calorie availability (FAO 
1996; Svedberg 2002). Considering mini­
mum calorie requirements, the estimated mean 
change in requirements across all countries was 
just 0.1% per year over the period 1990–1992 
to 2004–2006 (FAO 2010). Further, accord­
ing to FAO data (FAO 2010), the average 
minimum calorie requirements are increasing 
in most low-income countries and are higher 
(and increasing) in middle-income countries. 
This means our estimate may be conservative. 
Finally, Svedberg (2002) estimated that over a 
20-year period, 88% of the change in regional 
undernourishment was explained by changes in 
per capita calorie availability.

We assumed that, once per capita GDP 
reached $10,000 (2000 US$; with an associ­
ated Gini coefficient of 0.38), socioeconomic 
conditions no longer contributed to stunt­
ing. We tested the sensitivity of the model to 
this assumption by rerunning it without this 
assumption. This made a negligible difference 
to estimates (data not shown).

Finally, a limitation of the overall model­
ing strategy is that climate change is assumed 
to enter the system only through its impact on 
crop production. First, this allows only a par­
tial consideration of future food security: food 
availability and, to a degree, access are mod­
eled, but stability and utilization are not (for 
a discussion, see Schmidhuber and Tubiello 
2007). Second, climate change is likely to 
affect undernutrition by a variety of routes, 
including plant diseases, extreme drought 
events, infectious disease, labor productivity, 
water availability, and overall impact on GDP. 
So far, these aspects have not been accounted 
for, and we recommend that future assess­
ments (of all health impacts, not just under­
nutrition) attempt to account for the multiple 
effects of climate change.

Model behavior. We examined model 
behavior over the range of plausible input vari­
able values. When either undernourishment 
or the development score are high (a high 
development score indicates poor socio­
economic conditions), moderate stunt­
ing decreases. However, this is accompanied 
by increases in severe stunting, provid­
ing that undernourishment is not too high 
[for the model’s equations surface plots, see 
Supplemental Material, Figure 2 (http://dx.doi.
org/10.1289/ehp.1003311)]. As with any 
model, output for input variable values falling 
outside the range within which the model was 
fitted should be interpreted with caution. In 
the data used to parameterize the equations, 
the maximum value for undernourishment was 
76% (Table 1), and the surface plots suggest 
that above this value, stunting estimates may 
be invalid. In our future estimates, only under­
nourishment in central SSA under climate 
change exceeded this (80% and 81%; Table 3); 
although these PoU estimates are only just out­
side the fitting range, the resulting stunting 
estimates should be interpreted cautiously.

The model’s equations suggest that, as 
either food access or general socioeconomic 
conditions worsen, severe stunting increases 
more rapidly than moderate stunting; that 
is, more children shift from moderate to 
severe stunting than shift from no/mild stunt­
ing to moderate stunting. It is likely that this 
behavior is partly because the model assumes 
that, regardless of conditions, the distribu­
tion of access to food remains constant. This 
assumption is a property of the FAO under­
nourishment model (FAO 2003) and of our 
development score (i.e., the Gini coefficient is 
assumed to remain constant at baseline levels). 
We believe that allowing distributions to vary 
should be considered in future work.

The θ parameters have negative values. 
This was unexpected but, when considered in 
the context of the full equation and in terms 
of observed model behavior, the model equa­
tions predicted stunting changes as expected. 
Thus, if either food or nonfood causes are high 
and those causes are then reduced, the impact 
on stunting is greater than if both food and 
nonfood causes are high and only one vari­
able is lowered. This suggests, as expected, that 
to best deal with stunting it is necessary to 
address both food and nonfood causes.

Dealing with uncertainty. It is axiomatic 
that there are uncertainties in any risk assess­
ment model. In this assessment, we have 
addressed parametric uncertainty in the stunting 
model through the use of Monte Carlo simula­
tions. Structural uncertainty will be addressed in 
future work by exploring nonlinear interactions. 
It was not possible to assess the uncertainty 
in the upstream models (e.g., climate models, 
crop models, trade model) that drive our model 
(i.e., the input uncertainties associated with xij 
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and wij) because we lacked the necessary infor­
mation. Future assessments should use a wide 
range of climate and socioeconomic scenarios 
in order to capture the uncertainty of future 
emission pathways and the world in which the 
climate impacts will occur.

Conclusions
Previous studies have shown that climate 
change is likely to have negative effects on 
future hunger and undernutrition (Nelson 
et al. 2009, 2010; Parry et al. 1999, 2004; 
Rosenzweig and Parry 1994), and our results 
are consistent with these. This reinforces the 
evidence base for action to be taken to reduce 
carbon emissions and the impacts of the cli­
mate change to which we are already commit­
ted. Additionally, our model suggests that to 
reduce and prevent future undernutrition, it 
is necessary to both increase food access and 
improve socioeconomic conditions.

Quantifying the size of the impact pres­
ents difficulties. Our work illustrates the 
importance of the outcome considered—for 
example, undernourishment versus stunting, 
and moderate stunting versus severe stunting. 
These outcomes have different implications 
for adaptation and decision making (e.g., 
whether adaptation policies should focus only 
on food supplies or consider water and sani­
tation provision) and different implications 
for health (e.g., severe stunting is a much 
greater health threat than is moderate stunt­
ing). Further, future socioeconomic condi­
tions must be considered; this involves both 
developing new data sets and designing mod­
els that recognize data constraints. Above all, 
because none of the above issues will be easily 
overcome, modeling efforts should explicitly 
describe their assumptions and limitations.

References

Black RE, Allen LH, Bhutta ZA, Caulfield LE, de Onis M, Ezzati M, 
et al. 2008. Maternal and child undernutrition: global and 
regional exposures and health consequences. Lancet 
371(9608):243–260.

Checkley W, Buckley G, Gilman RH, Assis AM, Guerrant RL, 
Morris SS, et  al. 2008. Multi-country analysis of the 
effects of diarrhoea on childhood stunting. Int J Epidemiol 
37(4):816–830.

de Onis M, Blossner M. 2003. The World Health Organization 
Global Database on Child Growth and Malnutrition: 
methodology and applications. Int J Epidemiol 32(4):518–526.

Easterling WE, Aggarwal PK, Batima P, Brander KM, Erda L, 
Howden SM, et al. 2007. Food, fibre and forest products. In: 
Climate Change 2007: Impacts, Adaptation and Vulnerability. 
Contribution of Working Group II to the Fourth Assessment 
Report of the Intergovernmental Panel on Climate Change 
(Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, 
Hanson CE, eds). Cambridge, UK:Cambridge University 
Press, 273–313. 

FAO (Food and Agricultural Organization of the United Nations). 
1996. The Sixth World Food Survey. Rome:FAO.

FAO (Food and Agricultural Organization of the United Nations). 
2003. FAO Methodology for the Measurement of Food 
Deprivation. Rome:FAO.

FAO (Food and Agricultural Organization of the United Nations). 
2009. State of Food Insecurity in the World: Economic 
Crises—Impacts and Lessons Learned. Rome:FAO.

FAO (Food and Agricultural Organization of the United Nations). 
2010. FAOSTAT. Available: http://faostat.fao.org/ [accessed 
26 May 2010].

FAO (Food and Agricultural Organization of the United Nations). 
2011. The State of Food and Agriculture 2010–2011: Women 
in Agriculuture. Rome:FAO.

Frongillo EA Jr, de Onis M, Hanson KMP. 1997. Socioeconomic 
and demographic factors are associated with world-
wide patterns of stunting and wasting of children. J Nutr 
127(12):2302–2309.

Harvard University, Institute for Health Metrics and Evaluation 
at the University of Washington, Johns Hopkins University, 
University of Queensland, World Health Organization. 2009. 
Global Burden of Disease Study: Operations Manual—Final 
Draft, January 20, 2009. Available: http://www.globalburden.
org/GBD_Study_Operations_Manual_Jan_20_2009.pdf 
[accessed 24 March 2010]. 

Klasen S. 2006. Poverty, Undernutrition, and Child Mortality: 
Some Interregional Puzzles and Their Implications for 
Research and Policy. Bonn, Germany:Institute for the Study 
of Labour.

Magdoff F, Tokar B. 2010. Agriculture and food in crisis: an 
overview. In: Agriculture and Food in Crisis (Magdoff F, 
Tokar B, eds). New York:Monthly Review Press, 9–30. 

McMichael AJ, Campbell-Lendrum D, Kovats RS, Edwards S, 
Wilkinson P, Wilson T, et al. 2004. Global climate change. 
In: Comparative Quantification of Health Risks (Ezzati M, 
Lopez AD, Rodgers A, Murray CJ, eds). Geneva:World 
Health Organization, 1543–1649.

Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, 
van Vuuren DP, et al. 2010. The next generation of scenar-
ios for climate change research and assessment. Nature 
463(7282):747–756.

Msangi S, Rosegrant MW. 2011. Feeding the Future’s Changing 
Diets: Implications for Agricultural Markets, Nutrition, and 
Policy. Washington, DC:International Food Policy Research 
Institute.

Nakicenovic N, Swart R, eds. 2000. Special Report on Emission 
Scenarios. Cambridge, UK:Cambridge University Press.

Nelson G, Rosegrant MW, Koo J, Robertson R, Sulser T, Zhu T, 
et al. 2009. Climate Change: Impact on Agriculture and 
Costs of Adaptation. Washington, DC:International Food 
Policy Research Institute.

Nelson GC, Rosegrant MW, Palazzo A, Gray I, Ingersoll C, 
Robertson R, et al. 2010. Food Security, Farming, and 
Climate Change to 2050. Washington, DC:International 
Food Policy Research Institute.

Parry M, Evans A, Rosegrant MW, Wheeler T. 2009. Climate 
Change and Hunger: Responding to the Challenge. 
Rome:World Food Programme.

Parry ML, Rosenzweig C, Iglesias A, Fischer G, Livermore M. 
1999. Climate change and world food security: a new 
assessment. Global Environ Change 9(suppl 1):S51–S56.

Parry ML, Rosenzweig C, Iglesias A, Livermore M, Fischer G. 
2004. Effects of climate change on global food production 
under SRES emissions and socioeconomic scenarios. 
Global Environ Change 14:53–67.

Pruss-Ustun A, Corvalan C. 2006. Preventing Disease through 
Healthy Environments: Towards an Estimate of the 
Environmental Burden of Disease. Geneva:World Health 
Organization.

Rosenzweig C, Parry ML. 1994. Potential impact of climate 
change on world food supply. Nature 367:133–138.

Schmidhuber J, Tubiello FN. 2007. Global food security under cli-
mate change. Proc Natl Acad Sci USA 104(50):19703–19708.

Smith L, Haddad L. 2000. Explaining child malnutrition in devel-
oping countries: a cross-country analysis. Washington, 
DC:International Food Policy Research Institute.

Smith LC, Haddad L. 2002. How potent is economic growth in 
reducing undernutrition? What are the pathways of impact? 
New cross-country evidence. Econ Dev Cult Change 
51:55–76.

Subramanyam MA, Kawachi I, Berkman LF, Subramanian SV. 
2011. Is economic growth associated with reduction in 
child undernutrition in India? PLoS Med 8(3):e1000424; 
doi:10.1371/journal.pmed.1000424 [Online 8 March 2011].

Svedberg P. 2002. Undernutrition overestimated. Econ Dev 
Cultural Change 51(1):5–36.

UNICEF (United Nations Children’s Fund). 1990. Strategy for 
the Improvement of Nutrition in Children and Women in 
Developing Countries. New York:UNICEF.

United Nations. 2007. United Nations, Department of Social 
and Economic Affairs, Population Division. 2007. World 
Population Prospects: The 2006 Revision. New York:United 
Nations.

Victora CG, Adair L, Fall C, Hallal PC, Martorell R, Richter L, et al. 
2008. Maternal and child undernutrition: consequences for 
adult health and human capital. Lancet 371(9609):340–357.

WHO (World Health Organization). 2006. WHO Child Growth 
Standards: Length/Height for Age, Weight-for-Age, 
Weight-for-Length, Weight-for-Height and Body Mass 
Index-for-Age: Methods and Development. Geneva:WHO.

WHO (World Health Organization). 2010. WHO Global Database 
on Child Growth and Malnutrition. Available: http://www.
who.int/nutgrowthdb/en/ [accessed 26 May 2010].

World Bank. 2010. World Bank Development Indicators. Available: 
http://www.worldbank.org/ [accessed 26 May 2010].



A 118	 volume 123 | number 5 | May 2015  •  Environmental Health Perspectives

Erratum

Erratum: Climate Change, Crop Yields, and Undernutrition: Development of a Model to Quantify the Impact 
of Climate Scenarios on Child Undernutrition

Lloyd SJ, Kovats RS, Chalabi Z. 2011. Environ Health Perspect 119(12):1817–1823; http://dx.doi.org/10.1289/ehp.1003311 
Published online 15 August 2011 

Table 2 originally contained two incorrect values. In column 3 (αk), –0.052 ± 0.021 has been corrected to 0.025 ± 0.013, and 
–0.013 ± 0.014 has been corrected to –0.052 ± 0.021. The HTML and PDF versions of the article reflect these changes. The results in the 
article were calculated using the correct values for the parameter estimates and remain unchanged. 

The authors regret the errors.

A Section 508–conformant HTML version of this article  
is available at http://dx.doi.org/10.1289/ehp.123-A118. 


